16 research outputs found

    Lie Symmetry Analysis for Cosserat Rods

    Get PDF
    We consider a subsystem of the Special Cosserat Theory of Rods and construct an explicit form of its solution that depends on three arbitrary functions in (s,t) and three arbitrary functions in t. Assuming analyticity of the arbitrary functions in a domain under consideration, we prove that the obtained solution is analytic and general. The Special Cosserat Theory of Rods describes the dynamic equilibrium of 1-dimensional continua, i.e. slender structures like fibers, by means of a system of partial differential equations.Comment: 12 Pages, 1 Figur

    Diet and subsistence in Bronze Age pastoral communities from the southern Russian steppes and the North Caucasus

    Get PDF
    The flanks of the Caucasus Mountains and the steppe landscape to their north offered highly productive grasslands for Bronze Age herders and their flocks of sheep, goat, and cattle. While the archaeological evidence points to a largely pastoral lifestyle, knowledge regarding the general composition of human diets and their variation across landscapes and during the different phases of the Bronze Age is still restricted. Human and animal skeletal remains from the burial mounds that dominate the archaeological landscape and their stable isotope compositions are major sources of dietary information. Here, we present stable carbon and nitrogen isotope data of bone collagen of 105 human and 50 animal individuals from the 5th millennium BC to the Sarmatian period, with a strong focus on the Bronze Age and its cultural units including Maykop, Yamnaya, Novotitorovskaya, North Caucasian, Catacomb, post-Catacomb and late Bronze Age groups. The samples comprise all inhumations with sufficient bone preservation from five burial mound sites and a flat grave cemetery as well as subsamples from three further sites. They represent the Caucasus Mountains in the south, the piedmont zone and Kuban steppe with humid steppe and forest vegetation to its north, and more arid regions in the Caspian steppe. The stable isotope compositions of the bone collagen of humans and animals varied across the study area and reflect regional diversity in environmental conditions and diets. The data agree with meat, milk, and/or dairy products from domesticated herbivores, especially from sheep and goats having contributed substantially to human diets, as it is common for a largely pastoral economy. This observation is also in correspondence with the faunal remains observed in the graves and offerings of animals in the mound shells. In addition, foodstuffs with elevated carbon and nitrogen isotope values, such as meat of unweaned animals, fish, or plants, also contributed to human diets, especially among communities living in the more arid landscapes. The regional distinction of the animal and human data with few outliers points to mobility radii that were largely concentrated within the environmental zones in which the respective sites are located. In general, dietary variation among the cultural entities as well as regarding age, sex and archaeologically indicated social status is only weakly reflected. There is, however, some indication for a dietary shift during the Early Bronze Age Maykop period

    Order-Based Representation in Random Networks of Cortical Neurons

    Get PDF
    The wide range of time scales involved in neural excitability and synaptic transmission might lead to ongoing change in the temporal structure of responses to recurring stimulus presentations on a trial-to-trial basis. This is probably the most severe biophysical constraint on putative time-based primitives of stimulus representation in neuronal networks. Here we show that in spontaneously developing large-scale random networks of cortical neurons in vitro the order in which neurons are recruited following each stimulus is a naturally emerging representation primitive that is invariant to significant temporal changes in spike times. With a relatively small number of randomly sampled neurons, the information about stimulus position is fully retrievable from the recruitment order. The effective connectivity that makes order-based representation invariant to time warping is characterized by the existence of stations through which activity is required to pass in order to propagate further into the network. This study uncovers a simple invariant in a noisy biological network in vitro; its applicability under in vivo constraints remains to be seen

    Effect of the isotiazole adjuvants in combination with cisplatin in chemotherapy of neuroepithelial tumors: experimental results and modeling

    No full text
    Abstract Chemotherapy is one of the main treatment options for cancer, but it is usually accompanied with negative side effects. The classical drugs combination with synergistic adjuvants can be the solution to this problem, allowing reducing therapeutic dose. Elucidating the mechanism of adjuvant action is of key importance for the selection of the optimal agent. Here we examine the system drug-adjuvant to explain the observed effect in practice. We used the first line drug cisplatin. Morpholinium and 4-methylpiperazinium 4,5-dichloro isothiazol-3-carboxylates were selected as adjuvants. The study of the cisplatin-adjuvant system was carried out by quantum chemical modeling using DFT. It turned out that adjuvants form conjugates with cisplatin that lead to the relocation of frontier molecular orbitals as well as increase of conjugate’s dipole moment. It resulted in change of the interaction character with DNA and increase of the bioactivity of the system. The data obtained are the basis for expanding the studies to include other drugs and adjuvants. Oncologists will have opportunity to use “classical” chemotherapy drugs in combination with synergists for those patients who have not been previously recommended to such a treatment because of pronounced toxic side effects

    Effect of Mechanical Shaking on the Physicochemical Properties of Aqueous Solutions

    No full text
    Long-lived luminescence in the blue region was found to occur in deionized water saturated with atmospheric gases following mechanical shaking. Luminescence intensity decreased exponentially after the cessation of stress. During vigorous mechanical shaking, we observed gas bubbles in solution, and the liquid–gas interface area increased noticeably. At the same time, the concentration of molecular oxygen decreased, which could not be attributed to the water warming up with exposure to mechanical stress. However, deaerated water rapidly became saturated with gases following mechanical stress. The recommendation that cell culture media should be mixed after they are removed from the fridge in order to allow saturation with oxygen is probably misleading. It was shown that gases existed in water both in the form of individual molecules and nanobubbles. Mechanical stress did not influence the number or size of nanobubbles. While gas nanobubbles were absent in freshly prepared deaerated water, they appeared following exposure to mechanical stress. In addition, in mechanically treated gas-saturated water, there was seemingly an equilibrium shift towards the decomposition of carbonic acid to water and carbon dioxide. At the same time, the pH of water tended to increase immediately after mechanical stress. It was demonstrated that reactive oxygen species (ROS) form in gas-saturated water under mechanical stress (30 Hz, amplitude of 5 mm). The relative generation rate of hydrogen peroxide and of the hydroxyl radical was 1 nM/min and 0.5 nM/min, respectively. It was found that with an increase in the frequency of mechanical action (f), the rate of ROS generation increased in proportion to f 2. The major pathways for hydrogen peroxide generation are probably associated with the formation of singlet oxygen and its further reduction, and the alternative pathway is the formation of hydrogen peroxide as a result of hydroxyl radical recombination
    corecore